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GAMMA PROCESSES

P. A. W. Lewis, Naval Postgraduate School, Monterey, CA., U.S.A.
E. McKenzie, University of Strathclyde, Glasgow, Scotland, U.K.
D. K. Hugus, Department of the Army, Washington, D.C.. U.S.A.

Abstract

The Beta-Gamma transformation is described and is used to define a very
simple first-order autoregressive Beta-Gamma process, BGAR(1). Maximum
likelihood estimation is discussed for this model, as well as moment
estimators. The first-order structure is extended to include moving average
processes and mixed first-order autoregressive, pth-order moving average
processes. It is shown that these Gamma processes are time-reversible and,
therefore, too narrow for general physical modelling. A dual process to the
BGAR(]) process, DBGAR(1), is introduced, as well as an iterated process
which combines the Beta-Gamma process and the GAR(1) process of Gaver and
Lewis (1980). Some properties of these extended autoregressive processes are
derived. Several highly nonlinear extensions of these processes which
produce negative correlation are given. Use of the processes to model a
sequence of times between failures of a computer system is described.

0. INTRODUCTION

The Gamma distribution is used to model a wide variety of positive

valued random quantities in fields such as operations analysis, reliability

theory, hydrology and meteorology. Thus, service time distributions and

interarrival times in queues are often modelled as having Gamma distribu-

tions, as are wind velocities (Hugus, 1982; Brown, Katz and Murphy, 1984 )

measured at successive discrete time points or river flows at successive

instants of time (Lawrance and Kottegoda, 1977). In all these cases, the

measurements are taken serially in time and are apt to be serially

dependent. Thus, development of time series with Gamma distributed marginal

distributions and various correlation structures is of great importance.

Gaver and Lewis (1980) showed that the usual linear first-order 3

autoregressive equation, Xn - PXni+1En9 would yield Gamma marginal

distributions if the i.i.d. sequence E n I was chosen with suitable marginal

distribution. This Gamma innovation distribution has a positive probability
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of being zero, so that the process (GAR(1)) generates sample paths which

exhibit 'runs-down' (as seen in river flow data), but which are "defective".

The defect lies in the fact that when En = 0, Xn and Xn-1 are proportional

and p can be estimated exactly in long enough time series. Moreover, the

probability of the defect is higher for k small, which is precisely where

the model is needed, since the usual techniques of transforming to normality

are then questionable and probably undesirable.

Bernier (1970) introduced the GAR(1) model in a hydrological context

and McKenzie (1982) introduced a multiplicative Gamma process called PAR(1)

- product autoregression of order one.

In Lewis (1983) and Hugus (1982), a simple linear, random coefficient

model called BGAR(1) was introduced. It is based on the Beta-Gamma

transformation described in Section 1.

The purpose of this paper is to develop the properties of this BGAR(1)

model and to extend the idea to moving average and mixed autoregressive

structures. In particular, it is shown that these processes, like the

Gaussian ARMA(p,q) models, are time reversible and therefore are very

particular.

Several schemes for broadening the structure of Gamma time series are

given. In particular, a technique of iteration produces a Gamma autoregres-

sive process with two structional parameters that can model, for given

marginal distribution and serial correlation, different kinds of sample path

behavior. Some nonlinear schemes that produce negative serial correlation

are also introduced.

It is important to note the multiplicity of Gamma processes which can

be derived with given first- and second-order structure. Conseqently, in

the absence of a 'natural' structure such as exists for Gaussian processes,

our aim has been to produce simple structures, i.e., linear, additive,

random coefficient processes.

Finally, a series of times between failures of digital computers

(Lewis, 1964) is analyzed and fitted with the model. The data is serially

correlated with a marginal distribution which is more skewed than an

exponential distribution. Although this data is known to be generated by a

branching Poisson process (cluster process), the Gamma model is much simpler
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and much more tractable than the cluster process, and provides an adequate

representation for most purposes.

i, PUUKMNARIKS

In what follows we will use B(m,n), or simply B when the parameteriza-

tion is clear, to stand for a Beta random variable with parameters m > 0 and

n > 0, denoted by Beta(m,n). The probability density function for a

Beta(m,n) random variable is

r(m~n) in-i xn-i

fB(x;mn) - rmr(n) x (1-x) , 0 S x < 1; m > 0; n> 0, (1.1)

where r(.) is the complete Gamma function.

We will denote by (B(m,n), B'(m',n'),.--} an i.i.d. sequence of vector

random variables whose components are independent Beta random variables.

Let G(k,8) stand for a Gamma random variable with shape parameter

k > 0, and rate parameter 8 > 0, denoted by Gamma(k,8). The probability

density function for a Gamma(k,8) random variable is

8kxk-ie-BX

fG(x ;k ,$)  = r(k) 'x k 0; 8 > 0; k > 0. (1.2)

We will denote by {Gn(kS)}, an i.l.d. sequence of Gamma variates.

A Gamma(k,8) random variable has moments

E(G) - k/B -; Var(G) - k/B2  C(G) - sd(G/) - k(1/2
C-)-s (/j)-k , (1.3)

where C(G) is the coefficient of variation, and Laplace-Stieltjes transform

LG (u) - E(e-uG) - ( )k. (1.14)

The Gamma variable is sometimes parameterized in terms of the parameter

P - E(G). This is useful in statistical work, since the mean is a multi-

plicative parameter and G can be written as a unit-mean Gamma variate, G*,



times p, i.e., G - uG*. However, in what follows, we will use the fact that

two independent Gamma variates with the same B-parameters, but possibly

different shape parameters, add to give another Gamma variate

G"(k+k',B) - G(k,O) + G'(k',O). (1.5)

The result is not true if the Gamma variates have the same mean but

different shape parameters.

The Gamma family of random variables include the Exponential(k N).

Erlang(k integer) and Chi-Square(k-r/2, r-1,2,--.; 0-2) random variables.

Gamma and Beta variates are intimately related and two of their

properties will be used throughout this paper.

(i) A Beta(m,n) variate may be generated as

G'(mS) (1.6)
B(m,n) - G'(m,s) + G"(n,B)'

where G'(m,B) and G"(n,B) are independent. Furthermore, the ratio B(m,n) is

independent of the denominator G'(m,s) + G"(n,B) - G(m+n,B) and this

property characterizes the Gamma random variable (Johnson and Kotz, 1970a).

(ii) The Beta Gamma transformation. Multiplying a G(m+n,B) random

variable by an independent B(m,n) random variable gives a G(m,B) random

variable

G(m,S) - B(m,n)G(m+n,8). (1.7)

Thus one can reduce the shape parameter of a Gamma random variable (multiply

by a Beta random variable), as well as increase it (add an independent Gamma

variate, as at (1.5)). A heuristic argument for the result (1.7) is that if

we wanted to perform the operation (1.7) on a computer, we could first

generate G'(m,B) and G"(m,B) to form the ratio (1.6) to obtain the B(m,n)

variate. There is, however, no need to generate G(m+n,B) in (1.7), we can

use G'(m,8) + G"(n,B), which is independent of the Beta variate.

Multiplication then gives O(m,B) - O'(m,$).
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(iii) A formal proof of the Beta-Gamma transformation is a special
case of the following Lemma, which will be used in the sequel.

Lemma. Let X(k,S) be a Gamma random variable and let B(kp,kp) be a
Beta random variable, which is independent of X(k,S), with p - 1--p

lying in (0,1). Then

Ele- (v+Bu)X) _ (_)kp ( )kp v Z 0, U Z 0.(18
S~v S++u

When v - 0, this result proves the Beta-Gamma transformation in the
form

X(kp,$) - B(kp;kp)X(k,$). (1.9)

Proof. Using (1.4) and conditioning on B, we get

f- (v+Bu)X j E 8 kl E 0. I
E~ BI(S+But B S+v 0 +i )

+V X. X 2._ J'(.- E(B'),

where we have used the finiteness of the expectation to take the expectation

inside of the binomial expansion.
XNow since E(B )-B~kp+R.,kp)/B(kp,kp) - r(kp~L)r(kp)r(k)/{r(k+i)rckp)r(kpfl

we have that

i i r(k~t)r(kp)r(kp)

_______ ______ _______ ____ _ kp+t-1

r~r(kr(k+) r(kp)r(k) - (k



Thus

(k+1)1)( Uj)E(B) - )kP+ - -)I

fpo L 8+ j+t V"I , jkP , jkP , -kP

and therefore

E-(v+Bu)X, _ ($)kP( )kp

E+v 8+vu

which was to be proved.

2. THE FIRST-ORDER AUTOREGRESSIVE PROCESS, BGAR(1)

2.1. Construction of the Process.

Using the Beta-Gamma transformation, we can construct a very simple

first-order autogressive process X n (k,B,p)} with Gamma(k,B) marginaln
distribution and a single parameter, p, that describes the dependency

structure of the process. We have

X (k,B,p) = B (kp,kp)X 1 (k,B,p) + Bn(kp,kp)Gn(kB) (0 <  p < 1) (2.1)
n n n1n PG

SBn (kp,kp)Xn- 1 (kB,p) + Y n(kp,8) n-0,±1,..., (2.2)

where {Y (kp,8)) are l.i.d. Gamma(kp,S) variates independent of then_

(Bn (kp,kP)} sequence. If X n1(k,8,p) has a Gamma(k,B) marginal

distribution, then multiplying by B (kp,kp) reduces it to a Gamma(kp,8)n
variate and adding the innovation variable Y (kp,8) creates the Gamma(k,B)n
variate, X (k,8). The alternate form (2.1) shows the process as an
transformation of an i.i.d. Gamma(k,B) sequence, but clearly generation on a

computer would be done with (2.2). In the sequel, we will drop the

parametric notation where no confusion is possible.
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It is clear that taking X0 to be a Gamma(k,B) variate will start the

process in a stationary mode. Also, the process is Markovian by

construction.

2.2. Serial Correlation.

It is easily established, using moments of Beta variables, that

p(r) = Corr(XnXnr) p Ir , r = 0,±l,±2,-.- . (2.3)

Thus, in the three parameter process, the parameters k and B describe the

marginal distribution of the process and p independently describes the

correlation structure. Note that since the process is only defined for

0 < p < 1 the correlations are non-negative.

2.3. Joint Laplace-Stieltjes transform.

In the stationary process IX n , let LXn '  (u,v) denote the jointn Xn I

Laplace-Stieltjes transform of the adjacent variables Xn and X Then we

have

LX  (u,v) - E[exp-Xn u-X n-v1]n,Xn1 n n-

- E[exp{-Bn Xn 1 U-Y nU-X vi ]

- EeUY )Ee (v+Bu)X1  (2.4)

where, in the last step, we have dropped the indices n and n-1 because of

stationarity and have used the assumed independence of Yn and Xn- to write

the expectation as the product of two expectations.

Now the second term is evaluated in the Lemma of Section 1 and we have



L ( I (B)kp( B )k( I )kP
X n X 1  B~u B+v B+v+u

(_L_ Lkp( B )kP. 25
B u ,+v B+v+u (2.5)

Since this transform is symmetric in u and v, the joint distribution of

Xn and Xn- is symmetric. Also, since the joint distribution of any set of

X 's can be obtained from (2.5) and the marginal Gamma distribution, then
Beta-Gamma process is time-reversible.

Note, too, that we have directly from the defining equation (2.2) that

the regression of Xn on Xn- 1 x is linear:

E(XnIXn-l=X) = px + (1-p)k/B = px + (1-p)v. (2.6)

The time-reversibility of the process shows that

E(Xn-1 IXnay) - py + (1-p)i. (2.7)

2.4. Convergence to a Gaussian AR(l) Process.
1I/2

As k gets large, the standardized Gamma(k,1) variate X' = (X-k)/k

converges to a standardized Gaussian variate. To prove this, consider the

pair Xn and X in the BGAR(1) process. The joint characteristic function

for the standardized variables X' and X' is, using (2.5)
n n-1

(s,t) = Elexp(-isX'-itXn_1

-e ik 1 /2 (s+t)[ 1 +isk- I / 2 kp[ I /+itk- 2 1 +ik 1 1 2 (s+t) -kp.

-112
Taking logarithms and expanding in powers of k gives

1/2 112_ 2 -3/2IfXnXn- l(s,t) - ik (s+t) - kp~isk -(is) /(2k)+O(k
n - -1/2_ 2 -3/2

- kP{itk -(it) /(2k)+O(k

- kpfik- 12(s+t)-(i) 2(s+t) 2/(2k)+O(k-3/2

8



and as k*, this converges to

X (s,t) - .s +t2+2pst}. (2.8)
n n-1

Thus, since the process is Markovian, the BGAR(1) process is equivalent to a

Gaussian AR(1) process when k becomes large.

2.5. Additivity and the GAR(1) Process.

Gaver and Lewis (1980) showed that the usual linear stochastic

difference equation

Xn  - PXn-1 + Eno (2.9)

will give a process (GAR(1)) with Gamma(k) marginal distributions if E is

the Gamma innovation variable GI n(k,p) with Laplace-Stieltjes transform

kn
{(1+ps)/(1+s)} , where 0 < p < 1. This variable can be simulated by methods

given by Lawrance (1982) and McKenzie (1986).

Note that the GAR(1) process is a linear additive (constant

coefficient) process and adding two independent GAR(1) processes with the

same B and p values, say {X*(kl)} and (X**(k ) gives a new GAR(1) process
n 1n 2

VC with shape parameter k +k and dependency parameter p. This is not true for
1 2

the BGAR(1) process which is a random coefficient, linear additive process.

The process obtained by addition is a process with Gamma marginals and

correlation structure p(r) = p, but it is not even Markovian. Additional

differences between the processes are that while the BGAR(1) process is

time-reversible, the GAR(1) process exhibits 'runs down'. In fact, it is

degenerate in the sense that the innovation variable GI is zero withk
probability p . Thus, we get X n/Xn- - p with probability p , and p can be

estimated exactly in long enough series (Gaver and Lewis, 1980). This

degenerate behavior is not exhibited by the BGAR(1) process. A method for

combining two processes to obtain a broader process is described in Section

5.

9L



2.6. The Conditional Density for Xn, Given Xn-1 y.
From the definition (2.2), we have that

P{X n < XIXn- 1 m z = PIB n(kp,k )z + Y n(k-pB) xi

= PYn (kP,B) 9 x - B n(kp,kp)zl.

Now, by definition, Y n(kP,) is independent of Xn- 1 and of B n(kp,kp). Thus

conditioning on B and differentiating with respect to x yields then

conditional density for Xn, given Xn-i z, as

fxi (~)= r(k) kkpe-kX
f (xy) - x k e x >0, y z 0XX n Xn- 1  r(kp)ir(kp)1 2

L k
X f w (l-w)k p- 1 (x-yw)ekyWdw, (2.10)

0

where

I if x > y,L =t (2.11)

x/y if x < y,

and, for simplicity, the scale parameter 8 has been set equal to one.

This density is a continuous funotion of x and absolutely continuous

except where x - y. Its utility is in obtaining maximum likelihood

estimates of the parameters 8 (or p), k and p. This is discussed in the

next subsection.

2.7. Moment and Maximum Likelihood Estimates in BGAR(1).

There are "natural" moment estimators for the three parameters in the

BGAR(1) model, namely the mean, p, (or 8), the shape parameter, k, and the

first-order serial correlation coefficient, p. From (2.3) and (1.3), these

estimates are, from a sample (observed time series) of length n, 4

10
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n
" X" Xi/n, (2.12)

k - (X)2/S2 , (2.13)

where S2 is the sample variance, and

n-1

- (Xi-X)(X i+-X)/{(n-1)S2 ). (2.14)
i-11

n
The variance of D is var(X)[1+2 I (1-(r/n)}pr]/n and nVar(D) is

r-1
asymptotically equal to z2(1+p)/{(1-p)k}. More general properties of the

estimates R and 0, however, are hard to derive. But, their distributions

are independent of the scale parameter p.

In Table 2.1, we give the simulated standard deviation and bias of the

estimates R and D for values of k = 0.25, 0.75, 1.0, 2.0 and p - 0.25,

0.60, 0.90 for various values of n. Note that the values of n differ with
112

p. since the "equivalent sample size", n'-n[(1+p)/I(1-p)k}] 1  , is

different. Here n' is the sample size which would be needed, for given p,

to achieve the same variance for as in the p-0 (independence) case. The

simulation study was performed with the SUPER-SIMTBED program of Lewis, et

al. (1985).

Two other properties of the process may be useful in validating the

BGAR(1) model from data.

The first is that difference of successive values in the time series,
Dn a X n+1-X n , have an I-Laplace distribution (Dewald, 1985). This result

comes from (2.4),

11
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after converting to characteristic functions and setting v -u. We have

the characteristic function

n O(u) - Lx Xni(iu,-iu)
n n 'X n - 1

Skp. k

BYiu 6-lu 1

02 kP

This is the characteristic function of an L-Laplace random variable with

i- kp; the distribution is symmetric about zero. It goes to a Normal

random variable as 1 4 -, but for L 1, the density function is not

absolutely continuous at zero. In fact, for Z 1 1/2, the density is

infinite at zero. The fact that the difference has median value 0,

irrespective of the value of p or 8, can be useful in validating the model.

Consider, now, ratios R = X n+/X n; from (2.2) this is
n__ 1 n

R n B (kp,kp) + Y (kp,B)/X n .Rn n~l1 Yn+1n

But Y n+(kp,8) and Xn are independent Gamma variates, so 
that, if k>1,

E(Rn) n E{B n+(kp,kp) + EY n+1(kp,O)/X n

- p + (kP/S)/{(k-1)/O} = 1 +  /(k-1). (2.15)

Higher moments can also be obtained.

These results could be of use in validating the model. Another

possibility for validating models is the higher-order residual analysis of

Lawrance and Lewis (1986).
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Joint-maximum likelihood estimates for k and p (and perhaps V) can be

obtained from the conditional density (2.10) and the formula for the joint

density of X n,Xn-1 , . .,x I is

f(xn ;x n-1 ;x 1 ) X f Xn (xn;xn X n-1 x )X . xf x1

(2.16)

where f X(x 1) is a Gamma(k,1) density.

Hugus (1982) used (2.16) to obtain joint-maximum likelihood estimates

for k and p. Three cases are shown in Figure 2.1. Generally, when k is

greater than 1, moment estimates of k and p are quite efficient, which

agrees with results for independent Gamma(k,1) variates (Bartlett and

Kendall, 1946). However, when k is less than one, the maximum likelihood

estimates become much more efficient than the moment estimators.

The moment estimators, p, K, p, given at (2.12), (2.13) and (2.14) serve

as good starting points for numerical evaluations to find the maximum

likelihood estimates, p, k, p, of k and p. Techniques for the numerical

integration of (2.10) are given in Hugus (1982).

3. MOVING AVERAGE AND HIGHER ORDER AUTOREGRESSIVE STRUCTURES

The Beta-Gamma transformation can be used to generate dependency

structures other than first-order autoregressive structures for Gamma

disbributed time series. Several of these structures are given in this

section.

3.1. The First-Order Moving Average Process, BGMA(1).

The first-order moving average process, the BGMA(1), is constructed in

essentially the same way as the BGAR(1) above. If [G ) is a sequence ofn

i.i.d. Gamma(k,B) random variables and [B n  is an independent sequence of

i.i.d. Beta(ka,ka) random variables, where a = 1-a, we define the (backward)

BGMA(1) process {X n by
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Xn - Gn + BnGn-1' 0 9 a S 1. (3.1)

Evidently, IX ) is a stationary process and X and X are independent
n n n-r

if Irl > 1. The marginal distribution of Xn may be derived by noting that

the right-hand side of (3.1) is the sum of a G(k,O) random variable and an

independent G(ka,8) random variable. Thus, X is a Gfk(1+a),B) randomn

variable. This process has the same structure as the usual Gaussian MA(1)

process, except that here the coefficient, Bn, is a random variable rather

than a constant. An immediate effect of this construction is that the

observed and innovation processes, (X n  and IG n, respectively, have

different Gamma marginal distributions. This is in contrast to the

structure of the EARMA processes (Lawrance and Lewis, 1980), where it was

deliberately arranged that they should have the same distribution. However,

as we shall see shortly, this disparity in marginal structure has some

advantages.

From the viewpoint of modelling, it is more useful to determine the

parameters of the innovation process in terms of those of the observed

process. For this reason, we reparameterize (3.1) slightly. We consider

G n I to be i.i.d. Gamma{k/(1+a),B} r.v.s. and (B n  to be i.i.d.

Betafka/(1+a), ka/(1+a)} random variables. This yields an observed process

(X } which is Gamma(k,S).n

We may note that if we write p - pX(1) - a/(1+a), then G is
X n

Gamma(kp,B), the same innovation process as for the BGAR(1) process.

3.2. Autocorrelation Function for the BGMA(1) Process.

The autocorrelation function for the moving average process may be

determined directly. Thus, Cov(X n,X ) - Cov(BnGn-1,GnI) - E(B)Var(G),

and so

I' -1,

p (r) - (3.2)
0, Irl > 1.

For I kI - 1, the attainable range of correlation is 0 S pX(1) S 0.5, which

is the full possible range of positive correlation. This is because, for a

17



first-order moving average, IPX( 1)l 0.5; see, e.g. Hugus (1982). The fact

that the whole positive range is available is important, because it is in

contrast to the EMA models (Lawrance and Lewis, 1977; 1980), where

correlation is bounded above by 0.25. The greater flexibility in (3.2) is a

result of the innovation and observed processes having different

distributions. Since for k - 1, the Gamma distribution is an exponential

distribution, the BGMA(1) process is then a broader first-order exponential

moving average process than the EMA(1) process.

3.3. Joint Distributions.

The bivariate Laplace transform of (Xn+ ,X n ) can be derived by using

(1.8). Thus, again, using the notation a-i-a, we have

L(u,v) - E{exp(-uX n+1-vX n ) - E(exp(-uG h+1-uB n+1 G -vG n-VBnn-1 

a LG (u)E(L G(v+uB))LBG(v)

ka , jo ko, (3.3)

" +u BlV 3 flU+-
using the Lemma above. This has exactly the same form as the joint

transform, (2.5), of (X n+,X n ) for the BGAR(1) process with a corresponding

to p. This, too, corresponds to the behavior in Gaussian processes, where

the joint distributions for the autoregressive and the moving average

processes have the same form and differ only in their autocorrelation

functions. An immediate consequence is that the conditional distribution of

X n+ given X n, and Xn given Xn+1 , have exactly the same form as for the

BGAR(1). We note the somewhat unusual result for a non-Gaussian process

that regression is linear in both directions, even though the process is a

moving average. In fact, E(Xn+ 1 IXn x) - E(XnlXn+1x) - ax+ka/B - ax+aE(X).

The joint Laplace transform of any finite set of consecutiv.e

observations can be obtained by the procedure that yielded (3.3). Thus, the

joint transform of (Xn ,Xn_ 1 ,. . ,Xn r +1 ) is given by

18



L~~~u , i.., kmxr-1 k1-2ai) x ka r k B
1 i-2 r i2 uiui-

(3.4)

Note that this is not the r-dimensional transform for the BGAR(1) process.

Equality holds for only r - 2.

One consequence of (3.4) is that, since L(U1 ,u 2 ,o-.,u r

L(u rur ,...,uI), the process is time-reversible.

The bivariate Gamma distribution whose transform is given at (3.3) is

well known (Johnson and Kotz, 1970b, p. 219) and is called by Ghirtis (1967)

the double Gamma distribution. Since the multivariate form of this

bivariate Gamma distribution arises as the individual sums of m independent

Gamma variates with a common, independent Gamma variate, it is doubtful that

triples, say X n 2 , Xn+19 X in the BGAR(1) process would have this

multivariate distribution. In fact, (3.4) shows that this is not so for the

moving average process.

Another result that we can immediately derive from the joint transform

is the distribution of the sum of n consecutive observations. This has a
r

particularly simple form for the BGMA(1) process. If T = E X. then
n i-i 1

LT(u) - L(u,u,...,u), which, from (3.4), is given by

-
, j r-2 (r - 1)a ) , O r- )a

LT(u) - + (3.5)

Further, since 0 < a S 0.5, we can rewrite (3.5) in terms of random

variables as

T r- G~k~r-2(r-1)cz),8] + 2Gfk(r-1)a,6),r

where the two Gamma random variables are independent.

3.4. Higher Order Moving Average Processes.

Higher order moving average processes may be constructed by extending

the BGMA(1) in an obvious way. Thus, the GBMA(q) is given by
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X - G+i B G (3.6)

q
where G n ) is a sequence of i.i.d. Gamma{k/(1+ Ea ),0) random variables and

n11
{B n, i  is an independent sequence of i.i.d. vector random variables with

q q

Bn,i -I 1,2,...,q, being a {kai/(1+E(m)% kc i/(l+Ecai)} random variable. In

this case, (X n I is a stationary Gamma(k,B) process with Xn, Xn-r independent

when Irl > q. The autocorrelation function is given by

( q-1q+ / i
a r  + I CL i ot j+r / +  j 1 j r-1 ,2 ,...,q

PX(r) - j=1

0 r > q,

which, again, is a close analogue of the usual autocorrelation function for

the Gaussian MA(q) process. The major difference is that all the

correlations are non-negative.

4. THE MIXED AUTOREGRESSIVE, MOVING AVERAGE PROCESS, BGARMA(1,1)

A more complicated dependence structure in Gamma distributed variables

that is the analog of the usual linear ARMA(p,q)-type process is now given.

4.1. Structure of the Mixed Process, BGARMA(I,1).

We can construct an ARMA-type process with a Gamma marginal distribution

by combining the two first-order processes we have discussed above. For

convenience, we write each in a slightly different form. The moving average

component is given by

Xn Y n-1 B nGn' (4.1)

where {G n, (B n } are as given in Section 3.1 above, i.e., independent

sequences of l.l.d. Gammafk/(1*), B random varlabes and i.i.d.

20
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Betafka/(1+a), ka/(1+*1 random variables, respectively. Notice that B is

the coefficient of Gn in (4.1), whereas it was associated with Gn-1 in

(3.1). Clearly, this change will make no distributional difference and, as

we shall see, renders the parameters of the ARMA model more readily

interpretable. The sequence Y nI is generated from a BGAR(1) process given

by

Y - AnY + AG (4.2)
n n n-1 n n

The process IG n  is as above and A n I and (An) are independent sequences of

i.i.d. Beta{kp/(1I+a),kp/(+a)} and i.i.d. Beta~kp/(1+a),kp/(1+a)} random

variables, respectively. If Yn-1 is G{(k/(1+a),8}, then so also is Y and

the required stationary process {Y I results. The product A'G is, of-n nn
course, the Gamma{kp/(1+a),81 random variable used as the innovation process

in Section 2.1 above, but is written in this form here to make explicit the

dependence on the innovation sequence Gn .

4.2. The Autocorrelation Function of the BGARMA(ll) Process.

The autocorrelation function of IX n I may be derived in the usual way.

Thus, Cov(X n,X n r ) Cov(Y nl,Y n-r-) + Cov(Y nl,B nr Gnr).

Now, Cov(Yn_1,Ynr_1 = ar(Y), and Cov(Y n-' Bn-r Gn-r
-r-1

app Var(G), so that we obtain

PX~r. .= aTr-1

(r) - - p 1 r - 1,2,-.. (4.3)

This is the form of the autocorrelation function of the ARMA(1,1) process.

Note, too, that the choice of the slightly different structure for (4.1) and

(4.2) has endowed the two parameters (p,m) with physical significance.

Choosing a-O effectively sets B to zero, so that the process is now simply
n

the BGAR(1) process, and we can see from (4.3) that PX(r) becomes p , as

expected. If we choose p-0, then Y becomes G and {X I is the BGMA(1)n n n
process, and (4.3) reduces to a/(1 c), as it should. The reduction of the

mixed model to its simpler forms when the parameters vanish is a consequence

of the structure we have chosen.
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4.3. Joint Distributions in the BGARMA(1,1) Process.

The joint distribution of two consecutive observations of the process

{Xn ) can be derived in the form of the corresponding Laplace transform.

Thus,

L(u,v) - E{exp(-uX n+1-vXn

- E[exp{-u(AnYn+An) - +uB G - vY - vB Gn} ]n n-1 n n n+1 n+1 n-1 n n

a LBG(u).ELY(v+uA)I.E{LG(uA' + vB)}.

The first two terms of this product have already been evaluated and we now

consider the third. By considering appropriate series expansions, we can

evaluate the third term in the form

~ m nS (-u)m . (-v)n . (aO+n)r(pO+m)r((9+m+n)r(O)

m-O n=O m! n r(aO)r r(O+n)r(e+m)

where 0 = k/(1+a). Hence, we can show that L(u,v) is given by

(l+u)(l~v)l 1+u+v l  2F1 (OP;Oa' 0'+-+--v )'  (4.5)

where 2FI is the Hypergeometric function, defined by

O n
F (a cz) - r(a~n)r(b+n)r(c) . z

n-0 r(a)r(b)r(c~n) n.

The behavior and properties of this function are detailed in Abramowitz and

Stegun (1964, Ch. 15). It is easily verified that when p-O or a=0, the

appropriate forms of L(u,v) result from (4.5). The transform corresponding

to higher-dimensional distributions are more difficult to obtain in closed

form, although, in principle, series expansions of the form of (4.4) can be

derived.
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Further, the symmetry of L(u,v) in u and v implies that the conditional

distributions of X n+ given X n and X n given X n+ are identical. In

particular, we can recover the conditional moments from (4.5) and it is

found that regression is linear and the conditional variance is quadratic in

X
n

4.4. Higher Order Mixed Processes.

Higher order BGARMA processes can be derived by suitable extensions of

the BGARMA(l,I). In particular, it is straightforward to construct a

BGARMA(l,q) process by replacing (4.1) by an MA(q) form as in (3.6). Thus,

q-1
Xn = i Bn .G + y-
n 0 - n-i n-qt

replaces (4.1) and (4.2) is as before. The more general problem of

extending to higher order AR forms is more difficult. One way of achieving

it, however, is to use mixtures (random indexing). For details, the reader

is referred to Lewis (1985).

5. DUAL AND ITERATED GAMMA PROCESSES

The first-order autoregressive Beta-Gamma processes given in equation

(2.1) has been shown to be time-reversible. This can be a handicap in

modelling phenomena such as water run-offs, which tend to have 'runs down'

in their sample paths. This is modelled, as noted, in a defective way by

the GAR(1) process of Gaver and Lewis (1980). We, therefore, look for other

Gamma processes, possibly with more than one parameter to model dependency

structure, which broaden the BGAR(1) process.

The first process to consider is the dual of the BGAR(1). The duality

refers to the fact that where in (2.1) we decrease the shape parameter, k,

of Xn- 1 by using the Beta-Gamma transform and then bring it up to k by

adding an independent Gamma variable, we now increase k in Xn- by adding an

independent Gamma variate and then decrease the parameter to k by using the

Beta-Gamma transform. Thus, we have
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X n(k,3) - B(kq)(Xn-1 (kS) + Gn(q.3)}. (5.1)

However, it can be shown that the joint transform of Xn and Xn_ 1 is

(i+u)- q(F+v)-q(+u+v)q-k2F 1 q,q;k+q;uv/(l+u)(1+v)), so that the process is

time-reversible. We thus have nothing new by way of broadening the BGAR(1)

process.

Another approach to broadening the BGAR(1) structure is to iterate the

process. Thus, in (2.1), the left hand side is a Gamma(k,B) random variable

and the procedure in (2.1) can be reapplied. However, a time-reversible

process is again obtained. A better way to iterate is to apply the GAR(M)

procedure to (2.1) and obtain a combination of the BGAR(1) and GAR(i)

processes:

X (k,O) - YB '(kp,kp)X + Yn(kp,B)) + GI n(kY,8) (5.2)
n n n-i nn

- YB'(kp,kp)X + YY (kp,B) + GI N(kY,), (5.3)
n n-1 n n

where 0 < Y < 1, 0 < p S 1, p - Y o 1, k > 0 and (GI n(kY,B)} is a sequence

of i.i.d. Gamma innovation random variables with Laplace-Stieltjes transform
k { )Iindependent of {B' and {yn(kp,Bf). The condition that p

and Y do not both equal one is necessary to obtain an ergodic process. Note

that (5.2) is different from the combination given in Lawrance and Lewis

(1982) and we denote it by GBGAR(I).

Now in (5.2), the case Y-I gives the BGAR(1) process, Y-0 and/or p-O

gives an i.i.d. sequence X n ) while p-1 gives the GAR(1) process. Thus, we

should find sample path behavior running from time-reversibility to 'runs

down' behavior. Also, the process is Markovian and has serial correlation

p(r) - (YP)Irl r - 0,±l,±2,.... ( 5 .4)

For the joint Laplace-Stieltjes transform of Xn and Xn_1 , we have
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L XnXn-(u,v) - E{exp(-uX -vX n 1 ) )

- E[exp(-uYBn(kp,kp)Xn_1 - uYYn(kB) - UGIn(kY,8) - vXn-0}

IB*Yu B lk B kp B k

Thus, it can be seen that the process is not time-reversible unless Y-1 (the

BGAR(1) case). The regression of Xn on Xn-1 " x is

E(XnIXnil-X) - p(1)x + (1-p(1)}E(X),

which is linear in x, but it is not the same as E(Xn_ 1 IXn-x).
To separately identify the parameters Y and p in this process, one must

go beyond second-order properties of the process. This is because the

parameters enter into the correlation (5.4) as a product. Higher order

residual analyses (Lawrance and Lewis, 1986) and maximum likelihood

estimation will be considered elsewhere.

6. NEGATIVE CORRELATION AND NON-LINEAR PROCESSES

All of the processes described above are limited by their serial

correlations being non-negative. There are a number of ways of extending

the processes to give negative valued serial correlations and we discuss one

of them in some detail. All methods involve non-linear functions of, say,

Xn- in a first-order autoregressive process. This is necessary because of

the non-negativity and lack of symmetry of Gamma disributed variates.

6.1. Antithetic Variates.

Let X be a continuous random variable with c.d.f. Fx (x) and inverse

c.d.f. F'(a), 0 < a 1. Then the random variable X* a F 111-F X)} is

called the antithetic variable to X. For symmetric two-sided random

variables centered at zero, X* - -X. For positive valued variables such as

Gammas, X* has the maximum attainable negative correlation for bivariate
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Gamma pairs (Moran, 1967). In particular, if k-1 (Exponential),

X* - -tn(1-e-X), but if ko1 the transformation is difficult to compute.

If XnI in (2.1) is replaced by Xn 1 in (2.1), then a very non-linear,

Markovian first-order autoregressive process is obtained. Serial

correlations beyond lag one are difficult to compute.

6.2. Coupling.

Gaver and Lewis (1980) introduced a scheme in the context of the GAR(1)

processes for cross-coupling two Gamma processes so that the marginal

processes will have negative serial correlations. It is actually easier to

implement this scheme for the BGAR(1) process than for the GAR(1) process,

because the random, Beta distributed coefficients are continuous. We do not

pursue this here.

6.2. Inverse Processes.

A direct scheme for obtaining negative correlation in a Gamma process is

now given. It is a generalization of a scheme given by Lewis (1983) to

generate negatively correlated bivariate Gamma pairs. Its utility lies in

the fact that the sequence can be generated with nothing but i.i.d. Gamma

variates, no numerical inversions of inverse distribution functions are

required.

Thus, let B (k;q-k), for q > k, be a sequence of independent
n

Beta(k;q-k) variates, independent of G'(q) an G"(k+q), which are
n - n

independent sequences of independent Gamma variates, n=1,2,... Also, let

X (k) be a Gamma(k) variate, where k > 0. The idea is that we want X n(k) to

be small when X n1(k) is large, while retaining the Gamma(k) marginal

structure of the process. We have

G'(q)

n

Note that the ratio is Beta(q;k) and, by the Beta-Gamma transform

(1.7), the product of this ratio with the independent Gamma(k+q) variable is
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a Gamma(q) variate. The multiplier B n(k;q-k) reduces the shape parameter
from q to k.

To obtain p(l), the correlation between X n(k) and X n-(k), we need

G(q)XnI (k)
EIXn(k)X _(k)) . E(B (k;q-k))El n_- n G ())

n n-1G'nX (k) +G~~

k Gn(q)Xn ( k ) o(6.2)
q B lX(k) + G'(q-)I

To evaluate the remaining expectation in (6.2), we use the fact that in an

expression such as X n 1(k)/(X n 1(k) + Gn'(q)}, the denominator is independent

of the ratio. Then we have, after some manipulation, that

E G'(q)Xn-1 (k) k(
E () + G I W q (+q+l "(6'
n- nXn_ 1(k) *G() I B(k ~)~ 63

Combining (6.2) and (6.3), we get the suprisingly simple result that

Corr(XnXnI) = p(M) kq+ q > k. (6.4)
n n-1 k+q +1

This correlation is always negative and if k - 1 (the Exponential case),

p(1) has a minimum attainable value of -1/3 when q - k. This is about

halfway to the minimum attainable correlation for bivariate Exponential

variables of -0.61.

The scheme can be iterated to achieve greater negative serial

correlation. In this and the scheme (6.1), serial correlations of higher

order are difficult to obtain. However, since the process is Markovian, the

decay of the absolute values of the serial correlations is geometrically

bounded.
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7. AN ANALYSIS OF TIMES BETWEEN FAILURES OF A COMPUTER SYSTEM

Hugus (1982) used the Beta-Gamma process to analyze a long sequence of

wind speeds. This sequence is very non-stationary, containing yearly

cycles. The model actually used is v(n)G n , where P(n) is a log-linear

function of n and G* is a unit-mean BGAR(I) process.
n

A simpler, stationary series of times between failures of a computer

system is analyzed here. Although this data is known to be generated by a

branching Poisson process (Lewis, 1964), the Gamma model is much simpler and

much more tractable than the branching Poisson process and provides an

adequate representation for most purposes. Modelling of these times between

failures is important because, for example, they represent times at which

requests for service to the computer are made.

In Figure 7.1, we give a Gamma probability plot for the 256 times

between failures. The fit appears adequate, but the goodness of fit

statistics in the table in Figure 7.1 must be used with caution, since the

data is serially correlated and two parameters have been estimated from the

data. The parameter k (ALPHA in the table) is estimated as k - 0.704. Note

the two outliers in the Gamma probability plot. Since these are serially

adjacent, they probably represent a lapse in recording of computer failures.

In Figure 7.2, we show a correlation analysis of the data. The decay in

correlation from D(O) -0.353 to higher lags is consistent with first-order

autoregressive correlation structure. The bands in the figure are

approximate confidence intervals for each P(k) under the assumption the true

correlation is zero for lag greater than k. (See Box and Jenkins, 1976, p.

35 for details). Clearly the times between failures are correlated and thus

a renewal model, say, for these times between failures would be inadequate.

The partial autocorrelation plot in Figure 7.2 also confirms the first-

order autoregressive nature of the data. The last panel in Figure 7.2 shows

the autocorrelation function for the estimated residuals, R nX ne-P(1)Xn-

there is no significant correlation in this series.

Finally, in Figure 7.3, we give empirical density functions (kernel

density estimates) for the successive differences, X n-Xn , n=2,3,..- and

successive ratios X /X , n=2,3.,., which were discussed in Section 2.7.
n n-2

r2



The differences show a highly symmetric and long-tailed density function

which is consistent with an I-Laplace distribution. Note that the median of

the differences is estimated to be -9. Given the range of the differences,

this is probably not significantly different from the value of zero which

would hold for the time-reversible Beta-Gamma process. The ratios, X /Xn n-l1

have an estimated mean of 10.812 with estimated standard deviation of

42. 432/(255) I / 2 . 2.66. Thus, there is nothing here to suggest any

inadequacy in the Beta-Gamma model for characterizing the data.
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